Paragranh

Page

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR SIGNAL GENERATOR SG-1207A/U (WAYNE-KERR, MODEL PSG2400L)

Headquarters, Department of the Army, Washington, DC

18 March 2002

Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this publication. If you find any mistakes or if you know of a way to improve the procedure, please let us know. Mail your letter or DA Form 2028 to: Commander, U. S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5230. A reply will be furnished to you. You may also send in your comments electronically to our e-mail address: <u>2028@redstone.army.mil</u> or by FAX (256) 842-6546/DSN 788-6546.

			i ai agi apii	I ugu
SECTION	I.	IDENTIFICATION AND DESCRIPTION		_
		Test instrument identification	1	2
		Forms, records, and reports	2	2
		Calibration Description	3	2
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	4
		Accessories required	5	4
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	5
		Equipment setup	7	6
		Line stability	8	6
		Frequency accuracy	9	7
		RF output	10	9
		Output level flatness	11	12
		Attenuation	12	13
		Spectral purity	13	15
		Pulse modulation	14	18
		Internal oscillator	15	21
		Amplitude modulation	16	23
		Frequency modulation	17	25
		Phase modulation	18	27
		Final procedure	19	29

SECTION I IDENTIFICATION AND DESCRIPTION

1. Test Instrument Identification. This bulletin provides instructions for the calibration of Signal Generator, SG-1207A/U (Wayne-Kerr, Model PSG2400L). TM 43-6625-911-14&P was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.

a. Model Variations. There are at least two different SG-1207A/U versions fielded. While there are no operational differences between versions, there are internal differences that are maintenance significant. Therefore, the only adjustment included in this procedure is for the 10 MHz Ref Adj. Additional adjustments are contained in TM 43-6625-911-14&P.

b. Time and Technique. The time required for this calibration is approximately 6 hours, using the dc and low frequency and microwave technique.

2. Forms, Records, and Reports. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.

3. Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

	Table 1. Calibration Description		
Test instrument parameters	Performance specifications		
Frequency	Range: 100 kHz to 2000 MHz		
	Accuracy: <u>+</u> 1 PPM		
	Time stability: <u>+</u> 0.02 PPM/24hour		
	Line stability: <u>+</u> 1 PPM, 10% line change ¹		
RF output	Range: >15 to -125 dBm ²		
	Flatness: <u>+</u> 1.5 dB (100 kHz to 1000 MHz)		
	<u>+</u> 2.5 dB (100 kHz to 2000 MHz)		
	Attenuator accuracy: <u>+</u> 1.5 dB (100 kHz to 1000 MHz)		
	<u>+</u> 2.5 dB (100 kHz to 2000 MHz)		

Table 1.	Calibration	Description
10010 11	ounsi acron	200011001

See footnotes at end of table.

Test instrument					
parameters	Performance specifications				
Spectral purity	Harmonics range: Accuracy:				
	100 kHz to 2000 MHz	<+13 dBm,	<-25 dBc		
		<+3 dBm,	<-30 dBc		
	Sub harmonic range:	Accur	acy:		
	100 kHz to 1200 MHz	<+3 dBm,	<-40 dBc		
	100 kHz to 2000 MHz	<+3 dBm,	<-30 dBc		
	100 kHz to 2000 MHz	<+13 dBm,	<-20 dBc		
	Spurious signal range	Accur	acy:		
	100 kHz to 2000 MHz	z to 2000 MHz <+13 dBm, <-50 dBc			
		= >5	kHz carrier offset		
Pulse modulation	Pulse range: 100 kHz to 2	2000 MHz			
	Pulse rate: 50 Hz to 10	MHz			
	Pulse envelope on/off ratio: Accuracy				
	(100 kHz to 2000 MHz) >60 dB				
	Pulse envelope rise/falltin	ne <25 nanose	econds (10% to 90%)		
Amplitude modulation	Frequency range: 100 kHz to 2000 MHz				
	Depth: 0 to 99.9% in .1% increments				
	Accuracy: <u>+</u> 7% of setting at 1 kHz rate				
	and modulation depth of 30% to 70%				
	Distortion: <3%, (30% to 70% depth, 1 kHz rate)				
	(3 dB bandwidth 300 Hz to 3 kHz)				
	Incidental FM: <200 Hz (30% at 1 kHz)				
	(3 dB b	andwidth 300 H	Iz to 3 kHz)		
Frequency modulation	Frequency response: 50	Hz to 100 kHz i	nternal/external		
	Deviation range: 10 Hz t	o 200 kHz			
	Accuracy: $\pm 5\%$ at 1 kHz	z rate			
	Incidental AM: < 1% (3 c	1B bandwidth 3	00 Hz to 3 kHz,		
	1 kHz r	ate)			
	Distortion: $\leq 2\%$ (3 dB ba	indwidth 300 H			
		e and deviation	> 8 KHZ)		
Phase modulation	Nodulation bandwidth:	UU HZ to IU KH	Z f cotting (1 kHz rota)		
	Eroquency response: 12	radians $\pm 10\%$ 0	kHz roto		
	Frequency response: ± 2	up relative to 1	KIZ Tale		
	auss mountain bandwidth				
		anuwiutii 300 F	$12 (0.3 \text{ Km}^2)$		
at 1 KHZ rate and deviation > 8 KHZ)					

Table 1. . Calibration Description - Continued

See footnotes at end of table.

Table 1. Calibration Description - Continued			
Test instrument			
parameters	Performance specifications		
Internal oscillator	Frequency range: .1 Hz to 500 kHz ³ Accuracy: Same as time base Distortion: <0.2%, (@ 1 kHz and 400 Hz) Output: 1 V rms into 50Ω nominal		

Table 1. Calibration Description - Continued

¹Line stability verified to 8.7% line change.

²Range verified to –110 dBm.

³Range verified to 100 kHz

SECTION II EQUIPMENT REQUIREMENTS

4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment is shown in parenthesis.

5. Accessories **Required.** The accessories required for the calibration are common usage accessories, issued as indicated in paragraph **4** above, and are not listed in this calibration procedure.

	i i	
		Manufacturer and model
Common name	Minimum use specifications	(part number)
AUDIO ANALYZER	Distortion capability: $\leq .05\%$	Boonton, Model 1120-S/10
	Range: 20 Hz to 100 kHz	(MIS-35954/2)
AUTOTRANSFORMER	Range: 105 to 125 V ac	General Radio, Type W10MT3AS3
	Accuracy: <u>+</u> 1%	(7910809) or Ridge, Model 9020A
		(9020A) or Ridge, Model 9020F
		(9020F)
CRYSTAL DETECTOR	Range: 1 GHz	Hewlett-Packard Model 423A (423A)
ELECTRONIC	Range: 20 Hz to 500 MHz	Hewlett-Packard, Model 5345A
COUNTER	Accuracy: <u>+</u> 2.5 ppm or .00025%	(MIS-28754/1 Type 1)
FEEDTHROUGH	Range: 1 V rms	Hewlett-Packard Model 11048C
TERMINATION	1 kHz	(11048C)
FREQUENCY	Range: 10 MHz	Tracor, Model 527E
DIFFERENCE METER	Resolution: 1 part in 10 ⁻¹⁰ per day	(MIS-28754/1 Type 1)

Table 2. Minimum Sp	oecifications of Equ	ipment Required
---------------------	----------------------	-----------------

		Manufacturer and model
Common name	Minimum use specifications	(part number)
MEASURING	Frequency measurement:	Hewlett-Packard, Model 8902A (8902A)
RECEIVER	Range: 200 kHz to 2000 MHz	w/sensors, Hewlett-Packard, Models
	Accuracy: <u>+</u> .25 ppm	11722A (11722A) and 11792A (11792A),
	Power measurement: (+13 dB to -110 dB)	and microwave converter, Hewlett-
	$\pm.375 \text{ dB}$	Packard, Model 11793A (11793A),).
	Flatness measurement:	
	(100 kHz to 1000 MHz) <u>+</u> .375 dB	
	(100 kHz to 2000 MHz) <u>+</u> .625 dB	
MULTIMETER	Range: 50 to -15 V dc	John Fluke, Model 8840A/A-05/09
	Accuracy: <u>+</u> .25%	(AN/GSM-64D)
OSCILLOSCOPE	Range: 50 kHz	(OS-291/G)
	Accuracy: <25 ns risetime	
PULSE GENERATOR	Amplitude: 5 V	LeCroy, Model 9210 (9210) w/plug-ins,
	Period: 10 ms to 20 µs	LeCroy Models 9211 (9211) and 9215
	Width: 5 ms to 6 µs	(9215)
SIGNAL GENERATOR	Range: Output level +8 dBm	(SG-1219)
	Frequency range: 2 GHz	
SPECTRUM ANALYZER	Range: 100 kHz to 2 GHz (13 to -90 dB)	Hewlett-Packard Model 8562A,
	Accuracy: <u>+</u> 1.0 dB/10 dB step,	(AN/USM-489(V)1)
	1.0 dB maximum	

Table 2. Minimum Specifications of Equipment Required - Continued

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

a. The instructions outlined in paragraphs **6** and **7** are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.

b. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.

c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in TM 43-6625-911-14&P for this TI.

d. When indications specified in paragraphs **7** through **16** are not within tolerance, perform the power supply check prior to making adjustments. After adjustments are made, repeat paragraphs **7** through **16**. Do not perform power supply check if all other parameters are within tolerance.

e. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

NOTE

Before connecting TI, the protective earth terminal of the instrument must be connected to the protective conductor of the line power cord. The line plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two-conductor outlet is not sufficient protection.

NOTE

When indications specified in this procedure are not within tolerance, perform the power supply check prior to making adjustments.

- **a**. Connect TI to autotransformer.
- **b**. Connect autotransformer to a 115 V ac source and adjust autotransformer to 115 V ac.
- c. Press **POWER** pushbutton to **ON** and allow at least 30 minutes for TI to stabilize.

d. Connect **REF IN/OUT** connector of TI to **SIG INPUT** of frequency difference meter.

e. Connect **1 MHz** output of time/frequency workstation to **REF INPUT** of the frequency difference meter.

f. Adjust **REF ADJ** (TI rear panel) for a minimum frequency difference meter indication.

g. Verify oscillator drift is less than 2 parts in 10⁻⁸ in 24 hours.

h. Disconnect frequency difference meter from TI and the time/frequency workstation.

8. Line Stability

a. Performance Check

(1) Connect electronic counter **CHANNEL A** to TI **RF OUTPUT**, using cable and adapter.

(2) Position electronic counter controls and switches as indicated in (a) thru (j) below.

- (a) **FUNCTION FREQ A**.
- (b) GATE TIME 1S.
- (c) **DISPLAY POSITION AUTO**.
- (d) CHECK/COM A/SEP to SEP.
- (e) **CHANNEL A SLOPE** to +.
- (f) **CHANNEL A AC/DC** switch to **AC**.
- (g) CHANNEL A 50W1 MW switch to 50W.
- (h) CHANNEL A X1 X10 switch to X1.
- (i) **CHANNEL A LEVEL**+ as needed.
- (j) **SAMPLE RATE** as needed.
- (3) Press TI pushbuttons as listed in (a) through (e) below:
 - (a) **FUNCTION-CARR FREQ**.
 - (b) DATA ENTRY-100 MHz.
 - (c) **FUNCTION-CARR LEVEL**.
 - (d) DATA ENTRY-0 dBm.
 - (e) **FUNCTION-RF ON** to on (red light lit).
- (4) Record electronic counter indication.

(5) Vary autotransformer to the voltage level indicated in the first row of table 3. Electronic counter will indicate within ± 100 Hz of the recorded value in (4) above.

(6) Repeat (5) above for the remaining voltage levels listed in table 3.

Table 3. Line Stability

Autotransformer voltage indications	Electronic counter indication at 100 MHz ±100 Hz
125 V ac	
120 V ac	
110 V ac	
105 V ac	

- (7) Adjust autotransformer to 115 V ac.
- **b.** Adjustments. No adjustments can be made.

9. Frequency Accuracy

a. Performance Check

(1) Connect electronic counter **CHANNEL A** to TI **RF OUTPUT**, using cable and adapter.

(2) Position electronic counter controls and switches as indicated in (a) thru (j) below.

- (a) **FUNCTION FREQ A**.
- (b) GATE TIME 1S.
- (c) **DISPLAY POSITION AUTO**.
- (d) CHECK/COM A/SEP to SEP.
- (e) CHANNEL A SLOPE to +.
- (f) **CHANNEL A AC/DC** switch to **AC**.
- (g) CHANNEL A 50W1 MW switch to 50W.
- (h) CHANNEL A X1 X10 switch to X1.
- (i) CHANNEL A -LEVEL+ as needed.
- (j) **SAMPLE RATE** as needed.
- (3) Press TI pushbuttons as listed in (a) through (e) below:
 - (a) **FUNCTION-CARR FREQ**.
 - (b) DATA ENTRY-100 kHz.
 - (c) FUNCTION-CARR LEVEL.
 - (d) DATA ENTRY- -3 dBm.
 - (e) **FUNCTION-RF ON** to on (red light lit).
- (4) Verify that the electronic counter indicates within the limits listed in table 4.

(5) Set TI to the next frequency listed in table 4 using the TI **FUNCTION-CARR**

FREQ and DATA ENTRY keys and repeat (4) above.

(6) Repeat (4) and (5) above for the remaining frequencies listed in table 4.

	Table 4. Trequency						
Test instrument		Electronic counter					
DATA ENTRY		indications					
frequency		Min		Max			
100	kHz	99.9999	kHz	100.0001	kHz		
500	kHz	499.9995	kHz	500.0005	kHz		
1	MHz	999.999	kHz	1.000001	MHz		
5	MHz	4.999995	MHz	5.000005	MHz		
10	MHz	9.999990	MHz	10.000010	MHz		
50	MHz	49.999950	MHz	50.0000500	MHz		
100	MHz	99.999900	MHz	100.000100	MHz		
500	MHz	499.999500	MHz	500.000500	MHz		

Table 4 Frequency

- (7) Press TI **FUNCTION-RF ON** pushbutton to off (red light extinguished).
- (8) Disconnect electronic counter, cable, and adapter from TI RF OUTPUT.
- (9) Connect measuring receiver with sensor module (11792A) to TI RF OUTPUT.

(10) Press TI **RF ON** pushbutton to off (red light extinguished).

(11) Set TI to the first frequency listed in table 5 using the TI **FUNCTION-CARR FREQ** and **DATA-ENTRY** Keys.

(12) Verify that the measuring receiver indicates within the limits listed in table 5.

(13) Set TI to the second frequency listed in table 5.

(14) Set local oscillator and measuring receiver to measure 2 GHz, using the local oscillator and measuring receiver offset frequencies listed in table 5.

(15) Verify that the measuring receiver indicates within the limits listed in table 5.

Table 5 Frequency

Local (GHz)	Measuring receiver offset	Test instrument DATA ENTRY	Measurin indica	g receiver ttions
oscillator	(MHz)	frequency	Min	Max
N/A	N/A	1300 MHz	1299.998700 MHz	1300.001300 MHz
2	2000	2000 MHz	1999.998000 MHz	2000.002000 MHz

(16) Press TI **FUNCTION-RF ON** pushbutton to off (red light extinguished).

(17) Disconnect measuring receiver sensor module from TI **RF OUTPUT**.

b. Adjustments. No adjustments can be made.

10. RF Output

a. Performance Check

(1) Connect power sensor module (11722A) to measuring receiver **CALIBRATION RF POWER OUTPUT**.

(2) Calibrate and save the calibration of the power sensor.

(3) Disconnect the measuring receiver power sensor module from the **CALIBRATION RF POWER OUTPUT** and connect it to the TI **RF OUTPUT**.

- (4) Press TI pushbuttons as listed in (a) through (e) below:
 - (a) **FUNCTION-CARR FREQ**.
 - (b) DATA ENTRY-30 MHz.
 - (c) **FUNCTION-CARR LEVEL**.
 - (d) DATA ENTRY- 13 dBm.
 - (e) **FUNCTION-RF ON** to on (red light lit).

(5) Using measuring receiver and RF power measurement techniques; measured power will indicated with in the limits specified in table 6 for the TI RF power level setting.

(6) Press TI **FUNCTION-CARR LEVEL** and **DATA ENTRY** keys to the next level listed in table 6. Measuring receiver will indicate within limits specified for TI RF power level setting.

Table 6. 30 MHz RF Output						
			g receiver			
Test inst	rument	indica	ations			
DATA I	ENTRY	(dB)				
level		Min	Max			
13	dBm	11.5	14.5			
10	dBm	8.5	11.5			
5	dBm	3.5	6.5			
0	dBm	-1.5	1.5			

(7) Repeat (6) above for the remaining levels listed in table 6.

(8) Press TI **FUNCTION-CARR LEVEL** and **DATA ENTRY** keys to set TI output level to the first value listed in table 7.

(9) Using standard tuned level measurement techniques, verify the measuring receiver indicates within the limits specified in table 7 for the TI RF power level setting.

(10) Press TI **FUNCTION-CARR LEVEL** and **DATA ENTRY** keys to set TI output level to the next value listed in table 7. Measuring receiver indicates within limits listed in table 7 for the TI RF power level setting.

(11) Repeat (10) above for the remaining levels listed in table 7.

Table 7. 50 MHZ KF Output			
	Measurii	ng receiver	
Test instrumen	t indic	ations	
DATA ENTRY	(lB)	
level	Min	Max	
0 dBm	-1.5	1.5	
-10 dBm	-11.5	-8.5	
-20 dBm	-21.5	-18.5	
-30 dBm	-31.5	-28.5	
-40 dBm	-41.5	-38.5	
-50 dBm	-51.5	-48.5	
-60 dBm	-61.5	-58.5	
-70 dBm	-71.5	-68.5	
-80 dBm	-81.5	-78.5	
-90 dBm	-91.5	-88.5	
-100 dBm	-101.5	-98.5	
-110 dBm	-111.5	-108.5	

Table 7. 30 MHz RF Output

- (12) Press TI pushbuttons as listed in (a) through (e) below:
 - (a) **FUNCTION-CARR FREQ**.
 - (b) **DATA ENTRY-1300 MHz.**

- (c) **FUNCTION-CARR LEVEL**.
- (d) DATA ENTRY- 13 dBm
- (e) **FUNCTION-RF ON** to on (red light lit).

(13) Using RF power measurement techniques, measured power will indicate within limits specified in table 8 for the TI RF power level setting.

(14) Press TI **FUNCTION-CARR LEVEL** and **DATA ENTRY** keys to set TI output level to the next value listed in table 8. Verify the measuring receiver indicates within minimum and maximum limits listed in table 8.

(15) Repeat (14) above for the remaining levels listed in table 8.

Table 8. 1300 MHz RF Output			
	Measurin	g receiver	
Test instrument	indications		
DATA ENTRY	(dB)		
level	Min	Max	
13 dBm	11.5	14.5	
10 dBm	8.5	11.5	
5 dBm	3.5	6.5	
0 dBm	-1.5	1.5	

(16) Press TI **FUNCTION-CARR LEVEL** and **DATA ENTRY** keys to set TI output level to the first value listed in table 9. Verify the measuring receiver indicates within minimum and maximum limits listed in table 9 using standard tuned level measurement techniques.

(17) Using standard tuned level measurement techniques, measuring receiver will indicate within the limits specified in table 9 for the TI RF level setting.

(18) Press TI **FUNCTION-CARR LEVEL** and **DATA ENTRY** keys to set TI output level to the next value listed in table 9. Verify the measuring receiver indicates within minimum and maximum limits listed in table 9.

(19) Repeat (18) above for the remaining levels listed in table 9.

Table 9. 1300 MHz RF Output			
Measuring receiver		g receiver	
Test instrument	indications		
DATA ENTRY	(dB)		
level	Min	Max	
0 dBm	-1.5	1.5	
-10 dBm	-11.5	-8.5	
-20 dBm	-21.5	-18.5	
-30 dBm	-31.5	-28.5	
-40 dBm	-41.5	-38.5	

	Measurin	g receiver
Test instrument	indica	ations
DATA ENTRY	(d	B)
level	Min	Max
-50 dBm	-51.5	-48.5
-60 dBm	-61.5	-58.5
-70 dBm	-71.5	-68.5
-80 dBm	-81.5	-78.5
-90 dBm	-91.5	-88.5
-100 dBm	-101.5	-98.5
-110 dBm	-111.5	-108.5

Table 9. 1300 MHz RF Output

(20) Press TI FUNCTION-RF ON pushbutton to off (red light extinguished).

b. Adjustments. No adjustments can be made.

11. Output Level Flatness

a. Performance Check

(1) Connect power sensor module (11792A) to measuring receiver **CALIBRATION RF POWER OUTPUT**.

(2) Calibrate and save the calibration of the power sensor.

(3) Disconnect the measuring receiver power sensor module from the **CALIBRATION RF POWER OUTPUT** and connect it to the TI **RF OUTPUT**.

(4) Press TI pushbuttons as listed in (a) through (d) below:

(a) **FUNCTION-CARR FREQ** and **DATA ENTRY** keys to the first TI frequency listed in table 10.

- (b) **FUNCTION-CARR LEVEL**.
- (c) DATA ENTRY- 13 dBm.
- (d) **FUNCTION-RF ON** to on (red light lit).

(5) Manually tune measuring receiver to the first TI frequency listed in table 10.

(6) Set measuring receiver to measure RF power in **LOG** mode. Using measuring receiver and RF power measurement techniques, verify the measuring receiver indicates within minimum and maximum limits listed in table 10.

(7) Repeat **4a**(5) and (6) for the remaining frequencies listed in table 10.

Table 10. Output Level Flatness			
		Measurin	g receiver
Test instrument		indications	
DATA	ENTRY	(dB)	
frequ	iency	Min	Max
200	kHz	11.5	14.5
500	kHz	11.5	14.5
1	MHz	11.5	14.5
3	MHz	11.5	14.5
10	MHz	11.5	14.5
30	MHz	11.5	14.5
100	MHz	11.5	14.5
200	MHz	11.5	14.5
300	MHz	11.5	14.5
400	MHz	11.5	14.5
500	MHz	11.5	14.5
600	MHz	11.5	14.5
700	MHz	11.5	14.5
800	MHz	11.5	14.5
900	MHz	11.5	14.5
1	GHz	11.5	14.5
1.1	GHz	11.5	14.5
1.2	GHz	11.5	14.5
1.3	GHz	11.5	14.5
1.4	GHz	11.5	14.5
1.5	GHz	11.5	14.5
1.6	GHz	11.5	14.5
1.7	GHz	11.5	14.5
1.8	GHz	11.5	14.5
1.9	GHz	11.5	14.5
2.0	GHz	11.5	14.5

Table 10. Output Level Flatness

(8) Press TI **FUNCTION-RF ON** pushbutton to off (red light extinguished).

b. Adjustments. No adjustments can be made.

12. Attenuation

a. Performance Check

(1) Connect power sensor module (11722A) to measuring receiver **CALIBRATION RF POWER OUTPUT**.

(2) Calibrate and save the calibration of the power sensor.

(3) Disconnect the measuring receiver power sensor module from the **CALIBRATION RF POWER OUTPUT** and connect it to the TI **RF OUTPUT**.

- (4) Press TI pushbuttons as listed in (a) through (e) below:
 - (a) **FUNCTION-CARR FREQ.**
 - (b) DATA ENTRY- 500 MHz
 - (c) **FUNCTION-CARR LEVEL**.
 - (d) DATA ENTRY- 0 dBm.
 - (e) **FUNCTION-RF ON** to on (red light lit).

(5) Using measuring receiver and RF power measurement techniques, measured power will indicate within limits specified in table 11 for 0 dBM.

(6) Set measurement receiver to reference mode.

(7) Set TI to the next power level indicated in table 11.

(8) Using standard tuned level measurement techniques, verify the measuring receiver indicates within the minimum and maximum limits for TI output level listed in table 11.

(9) Repeat (7) and (8) above for the remaining output levels listed in table 11.

	Measuring receiver		
Test instrument	indications		
DATA ENTRY	(d	B)	
level	Min	Max	
0 dBm	-1.5	1.5	
-10 dBm	-11.5	-8.5	
-20 dBm	-21.5	-18.5	
-30 dBm	-31.5	-28.5	
-40 dBm	-41.5	-38.5	
-50 dBm	-51.5	-48.5	
-60 dBm	-61.5	-58.5	
-70 dBm	-71.5	-68.5	
-80 dBm	-81.5	-78.5	
-90 dBm	-91.5	-88.5	
-100 dBm	-101.5	-98.5	
-110 dBm	-111.5	-108.5	

Table 11. 500 MHz Attenuation

(10) Press TI pushbuttons as listed in (a) through (e) below:

FUNCTION-CARR FREQ. DATA ENTRY-1300 MHz. FUNCTION-CARR LEVEL. DATA ENTRY- 0 dBm. FUNCTION-RF ON to on (red light lit). (11) Using measuring receiver and RF power measurement techniques, measured power will indicate within limits specified in table 12 for 0 dBM.

(12) Set measurement receiver to ratio mode.

(13) Set TI to the next power level indicated in table 12.

(14) Using standard tuned level measurement techniques, verify the measuring receiver indicates within the minimum and maximum limits for TI output level listed in table 11.

(15) Repeat (13) and (14) above for the remaining output levels listed in table 12.

	Table 12. 1300 MHZ Attenuation			
	Measuri	ng receiver		
Test instrument	indic	cations		
DATA ENTRY	(dB)		
level	Min	Max		
0 dBm	-1.5	1.5		
-10 dBm	-11.5	-8.5		
-20 dBm	-21.5	-18.5		
-30 dBm	-31.5	-28.5		
-40 dBm	-41.5	-38.5		
-50 dBm	-51.5	-48.5		
-60 dBm	-61.5	-58.5		
-70 dBm	-71.5	-68.5		
-80 dBm	-81.5	-78.5		
-90 dBm	-91.5	-88.5		
-100 dBm	-101.5	-98.5		
-110 dBm	-111.5	-108.5		

Table 19	1200 MUZ Attenuetion
$1 able 1 \lambda$.	1300 MHZ Attenuation

(16) Press TI **FUNCTION-RF ON** pushbutton to off (red light extinguished).

(17) Disconnect measuring receiver sensor module (11722A) from TI ${\bf RF}$ OUTPUT.

b. Adjustments. No adjustments can be made.

13. Spectral Purity

a. Performance Check

(1) Connect spectrum analyzer **INPUT 50W** to TI **RF OUTPUT**, using cable.

(2) Connect TI **EXT REF INPUT** (rear panel) to spectrum analyzer **10 MHz REF IN/OUT** (rear panel).

(3) Press TI pushbuttons as listed in (a) through (e) below:

- (a) **FUNCTION-CARR FREQ.**
- (b) DATA ENTRY- .450 MHz.
- (c) **FUNCTION-CARR LEVEL.**
- (d) **DATA ENTRY- 13 dBm.**
- (e) **FUNCTION-RF ON** to on (red light lit).
- (4) Set spectrum analyzer controls as listed in (a) through (g) below:
 - (a) **PRESET**.
 - (b) **AMPLITUDE REF LVL** to **13 dBm**.
 - (c) FREQUENCY-CENTER FREQ to .450 MHz.
 - (d) **VIDEO BW** to **AUTO**.
 - (e) **RES BW** to **10 kHz**.
 - (f) **SPAN** to **1 MHz**.
 - (g) All markers off.

(5) Allow the display to sweep a few times then set spectrum analyzer controls as listed in (a) through (d).

- (a) **PEAK SEARCH.**
- (b) MARKER CF.
- (c) **MARKER DELTA.**

(d) **FREQUENCY-CENTER FREQ**, to (harmonic frequency listed in table 13) **MHz**.

(6) The spectrum analyzer **?MKR** will indicate less than the dBc limit listed in table 13.

(7) Set TI frequency and spectrum analyzer center frequency to the next frequency listed in table 13 and repeat (4)(g) through (6) above.

(8) Repeat (7) above for remaining frequencies listed in table 13

Tes	st instrument	Spectrum analyzer		
DATA ENTRY	DATA ENTRY	Harmonic		
level	frequency	frequency		
(dBm)	(MHz)	(MHz)	Harmonic number	dBc
13	.450	.900	2 nd	<-25
13	.450	1.350	3^{rd}	<-25
13	1	2	2 nd	<-25
13	1	3	3^{rd}	<-25
13	166.666665	333.333330	2 nd	<-25

Table 13. Spectral Purity

Tes	st instrument	SI	pectrum analyzer	
DATA				
ENTRY	DATA ENTRY	Harmonic		
level	frequency	frequency		
(dBm)	(MHz)	(MHz)	Harmonic number	dBc
13	166.666665	499.999995	3^{rd}	<-25
13	250	500	2^{nd}	<-25
13	333.333335	666.666670	2^{nd}	<-25
13	333.333335	1000.000005	3^{rd}	<-25
13	500	1000	2^{nd}	<-25
13	2000	1000	.5	<-20
13	2000	4000	2 nd	<-25

Table 13. Spectral Purity - Continued

(9) Press TI pushbuttons as listed in (a) through (e) below:

- (a) FUNCTION-CARR FREQ 100.
- (b) DATA ENTRY- 100 MHz.
- (c) **FUNCTION-CARR LEVEL**.
- (d) DATA ENTRY- 7 dBm.
- (e) **FUNCTION-RF ON** to on (red light lit).
- (10) Set spectrum analyzer controls as listed in (a) through (g) below:
 - (a) **PRESET**.
 - (b) **FREQUENCY- CENTER FREQ to 101 MHz**.
 - (c) **AMPLITUDE REF LVL to 7 dBm**.
 - (d) **VIDEO BW to AUTO**.
 - (e) **RES BW to AUTO**.
 - (f) All markers off.
 - (g) SPAN 2.5 kHz.
- (11) Set spectrum analyzer to single sweep mode and take one sweep.
- (12) Set spectrum analyzer marker to normal.
- (13) The spectrum analyzer **MKR** will indicate less than the dB limit listed in table 14.

Table 14. Noise Floor

Test Ins	trument	S	Spectrum Analyze	r
DATA ENTRY	DATA ENTRY	Center		dB
frequency	level	frequency	Span	indications
100 MHz	7 dBm	101 MHz	1 kHz	<-87 dBm

(14) Press TI pushbuttons as listed in (a) through (d) below:

(a) **FUNCTION-CARR FREQ** to the first TI frequency listed in table 15 below.

- (b) **FUNCTION-CARR LEVEL**.
- (c) DATA ENTRY- 13 dBm.
- (d) **FUNCTION-RF ON** to on (red light lit).

(15) Using spectrum analyzer, verify that all non-harmonic spurious signals are less than the dBc limit listed in table 15.

(16) Repeat (14) and (15) for the remaining frequencies listed in table 15.

Tee	t instrument	Snootmum on olygon
Tes	t instrument	Spectrum analyzer
DATA	DATA	
ENTRY	ENTRY	
level	frequency	Spurious signal
(dBm)	(MHz)	level
13	25 MHz	<-50 dBc
13	50 MHz	<-50 dBc
13	100 MHz	<-50 dBc
13	225 MHz	<-50 dBc
13	450 MHz	<-50 dBc
13	750 MHz	<-50 dBc
13	1500 MHz	<-50 dBc

Table 15. Spurious Signals

b. Adjustments. No adjustments can be made.

14. Pulse Modulation

a. Performance Check

(1) Connect equipment as shown in figure 1.

Figure 1. Pulse modulation on/off ratio hookup.

(2) Press pulse generator pushbuttons for a pulse output as listed in (a) through (h) below:

- (a) **CHANNEL A**.
- (b) **Period** and enter **10m/kHz** from data keyboard.
- (c) **Width** and enter **5 m/kHz** from data keyboard.
- (d) **Vhigh** and enter **5** from data keyboard.
- (e) **Vlow** and enter **0** from data keyboard.
- (f) **Delay** and enter **0 n/GHz** from data keyboard.
- (g) **2 Pulse** and enter **OFF Enter/Hz** from data keyboard.
- (h) On 9211 output module, disable (red light extinguished).
- (3) Press TI pushbuttons as listed in (a) through (e) below:
 - (a) **FUNCTION-CARR FREQ**.
 - (b) DATA ENTRY- 1 GHz.
 - (c) **FUNCTION-CARR LEVEL**.
 - (d) **DATA ENTRY- 10 dBm.**
 - (e) **FUNCTION-RF ON** to on (red light lit).
- (4) Press spectrum analyzer pushbuttons as listed in (a) through (g) below:
 - (a) **INSTR PRESET**.
 - (b) **AMPLITUDE REF LVL** to **+10 dBm**.
 - (c) **FREQUENCY CENTER FREQ** to **1 GHz**.
 - (d) **SPAN 1.5 MHz**.

(5) Press TI MODULATION/AUX-MOD SOURCE DISP and MODULATION /AUX-MOD ON EXT to ext.

- (6) Press spectrum analyzer pushbuttons as listed in (a) through (m) below:
 - (a) **RES BW** to **100 kHz**.
 - (b) **VIDEO BW** to **1 kHz**
 - (c) **MARKER ON**.
 - (d) **SPAN 0 Hz**.
 - (e) **CONTROL SWEEP** to **30 ms**.
 - (f) **CONTROL TRIG VIDEO** to **–10 dBm**.
 - (g) MARKER ON.
 - (h) Adjust **MARKER** control to top of squarewave.
 - (i) MARKER DELTA.
 - (j) Adjust **DELTA** control to bottom of squarewave.
 - (k) Adjust **MARKER** control to top of squarewave.
 - (l) MARKER DELTA.
 - (m) Adjust **DELTA** control to bottom of squarewave.

(7) Using spectrum analyzer, measure top to bottom of square wave in dB. Pulse envelope on/off ratio will indicate within limits specified in table 16.

- (8) Set TI **FUNCTION-RF ON** to off (red light extinguished).
- (9) Connect equipment as shown in figure 2.

Figure 2. Pulse modulation risetime hookup.

(10) Adjust pulse generator output for a period of 20 µsec and a pulse width of 15 µsec.

(11) Set TI FUNCTION-RF ON to on (red light lit).

(12) Set oscilloscope input impedance to 50Ω .

(13) Using oscilloscope measurement techniques, verify that the risetime of displayed envelope is within the limits listed in table 17.

Table 17. Risetime	
Oscilloscope	
< nS	
25	

(14) Using oscilloscope measurement techniques, verify that the falltime of displayed envelope is within the limits listed in table 18.

Table 18. Falltime
Oscilloscope
< nS
25

(15) Set TI **FUNCTION-RF ON** to off (red light extinguished).

(16) Disconnect pulse generator and oscilloscope from circuit.

b. Adjustments. No adjustments can be made.

15. Internal Oscillator

a. Performance Check

- (1) Connect TI **MODULATION IN/OUT** to audio analyzer **INPUT HIGH**.
- (2) Press TI pushbuttons as listed in (a) through (e) below:
 - (a) **FUNCTION-RF ON** to off (red light extinguished).
 - (b) MODULATION/AUX-MOD SOURCE DISP to Source One.
 - (c) **FUNCTION-MOD FREQ.**
 - (d) DATA ENTRY- 1 kHz
 - (e) MODULATION/AUX-MOD ON ONE.

(3) Using audio analyzer, measure the distortion. Audio analyzer distortion indication will be within the limits specified in table 19.

Table 19. Internal Oscillator Distortion		
Test instrument	Audio analyzer	
MOD FREQ	distortion indications	
frequency	(%)	
1 kHz	<0.2	

(4) Using audio analyzer, measure frequency. Audio analyzer frequency indication will be within the limits specified for the first frequency listed in table 20.

(5) Set TI FUNCTION-MOD FREQ and DATA ENTRY keys to the next frequency listed in table 20.

(6) Audio analyzer frequency indication will be within the limits specified in table 20 for the frequency setting of the TI.

(7) Repeat (5) and (6) above for the remaining frequencies listed in table 20.

Table 20.	Internal Oscillator F	requency	
	Audio analyzer		
Test instrument	indications		
DATA ENTRY	(Hz)		
mod frequency			
settings	Min	Max	
1 kHz	999	1001	
100 Hz	99	101	
500 Hz	499	501	
5 kHz	4.999 k	5.001 k	
10 kHz	9.999 k	10.001 k	
50 kHz	49.999 k	50.001 k	
100 kHz	99.999 k	100.001 k	

(7) Disconnect TI MODULATION IN/OUT from audio analyzer INPUT HIGH. Connect TI MODULATION IN/OUT to electronic counter CHANNEL A input.

(8) Position electronic counter controls and switches as indicated in (a) through (j) below:

- (a) **FUNCTION FREQ A**.
- (b) **GATE TIME 1S**.
- (c) **DISPLAY POSITION AUTO**.
- (d) CHECK/COM A/SEP to SEP.
- (e) **CHANNEL A SLOPE** to +.
- (f) **CHANNEL A AC/DC** switch to **AC**.
- (g) **CHANNEL** 50**W 1 MW** switch to **50W**.
- (h) **CHANNEL A X1 X10** switch to **X1**.
- (i) **CHANNEL A LEVEL**+ as needed.
- (j) **SAMPLE RATE** as needed.

(8) Set TI **FUNCTION-MOD FREQ** and **DATA ENTRY** keys to the first frequency listed in table 21.

(9) Using electronic counter, measure frequency. Electronic counter frequency indication will be within the limits specified for the frequency listed in table 21.

(10) Set TI **FUNCTION-MOD FREQ** and **DATA ENTRY** Keys to the next frequency listed in table 21.

(11) Electronic counter indication will be within the limits specified in table 21 for the frequency setting of the TI.

(12) Repeat (13) and (14) above for the remaining frequencies listed in table 21.

rubie #1. Internal Obeniator Prequency		
Test instrument	Electronic counter	
DATA ENTRY	indications	
mod frequency	(Hz)	
settings	Min	Max
200 kHz	199999	200001
300 kHz	299999	300001
400 kHz	399999	400001
500 kHz	499999	500001

Table 21. Internal Oscillator Frequency

(16) Disconnect **TI MODULATION IN/OUT** from electronic counter **CHANNEL A**.

(17) Connect **TI MODULATION IN/OUT** to **DMM INPUT HI LO** through feedthrough termination, Hewlett-Packard, Model 11048C, using appropriate adapters and cable.

(18) Set up **DMM** to measure V rms.

(19) Set TI **FUNCTION-MOD FREQ** and **DATA ENTRY** keys to the frequency listed in table 22.

(20) Using **DMM**, measure V rms. **DMM** indication will be within the limits specified in table 22.

Table 22. Internal Oscillator output voltage			
Test instrument	DMM indication		
DATA ENTRY	(V rms)		
mod frequency			
setting	Min	Max	
1 kHz	0.950	1.050	

b. Adjustments. No adjustments can be made.

16. Amplitude Modulation

a. Performance Check

(1) Connect equipment as shown in figure 3.

Figure 3. AM modulation hookup.

- (2) Press TI pushbuttons as listed in (a) through (j) below:
 - (a) **FUNCTION-CARR FREQ**.
 - (b) DATA ENTRY- 1 GHz.
 - (c) FUNCTION-CARR LEVEL.
 - (d) DATA ENTRY- 5 dBm.
 - (e) **FUNCTION- RF ON** to on (red light lit).
 - (f) FUNCTION-MOD FREQ.
 - (g) DATA ENTRY- 1 kHz.
 - (h) FUNCTION-MOD LEVEL.
 - (i) **DATA ENTRY- 30% AM**.
 - (k) MODULATION/AUX MOD ON ONE.

(3) Set measuring receiver to measure FM with a 3 kHz low-pass filter and a 300 Hz high-pass filter.

Table 23. Incidental FM			
			Measuring
Carrier	MOD	Modulation	receiver
frequency	FREQ	%	<hz< td=""></hz<>
1 GHz	1 kHz	30	200

(4) Measuring receiver will indicate within limits specified in table 23.

(5) Set measuring receiver to measure AM with 15 kHz low-pass filter and a 300 Hz high-pass filter.

(6) Set audio analyzer to measure distortion.

(7) Press TI **FUNCTION-MOD LEVEL** and **DATA ENTRY** keys for the values listed in table 24. Using measuring receiver, measure the AM percent of modulation. Measuring receiver will indicate within the limits specified in table 24.

Table 24. Internal AM Modulation Accuracy			
Test instrument	Measuring receiver modulation indications (%)		
DATA ENTRY			
percent of	Min Max		
modulation	101111	Wax	
30%	23	27	
60%	53	67	
90%	83	97	

Table 94 Internal AM Madulation

(8) Press TI FUNCTION-MOD LEVEL and DATA ENTRY keys for the values listed in table 25. Using audio analyzer, measure the AM distortion. Audio analyzer will indicate within the limits specified in table 25.

Table 25. Inter	nal AM Modulation Distortion
Test	
instrument	
DATA ENTRY	Audio analyzer

instrument DATA ENTRY	Audio analyzer
percent of	distortion indications
modulation	(<%)
30%	3
60%	3
90%	3

(9) Press TI MODULATION/AUX-MOD SOURCE DISP and MODULATION /AUX-MOD ON EXT keys.

(10) Press TI FUNCTION-MOD LEVEL and DATA ENTRY- 90% AM keys.

(11) Set audio analyzer to output a 1 kHz signal at 1.414 V rms with an output impedance of 50Ω .

(12) Set audio analyzer to measure level and set units to dB, then set audio analyzer to ratio mode.

(13) Set audio analyzer to output frequencies listed in table 26 and verify audio analyzer level indication is within limits listed in table 26.

	Audio analyzer	Audio analy:	zer indication
	(Hz)	Min	Max
Test description			
250 Hz Response	250	-1	1
400 Hz Response	400	-1	1
500 Hz Response	500	-1	1
2 kHz Response	2000	-1	1
5 kHz Response	5000	-1	1
10 kHz Response	10000	-1	1

Table 26. External AM Frequency Response

b. Adjustments. No adjustments can be made.

17. Frequency Modulation

a. Performance Check

(1) Connect equipment as shown in figure 4.

Figure 4. FM Modulation hookup

- (2) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) **FUNCTION-CARR FREQ**.
 - (b) DATA ENTRY- 1 GHz.
 - (c) FUNCTION-CARR LEVEL.
 - (d) **DATA ENTRY- 13 dBm**.
 - (e) **FUNCTION-RF ON** to on (red light lit).

- (f) MODULATION/AUX- MOD ON ONE.
- (g) MODULATION/AUX- MOD ON EXT.
- (h) MODULATION/AUX- MOD OFF.

(3) Set measuring receiver to measure FM with an RMS detector, 3 kHz low-pass filter, and a 300 Hz high pass filter.

(4) Measuring receiver will indicate within limits specified in table 27.

Table 27. Residual Response
Audio analyzer distortion
indication
(%)
2%

- (5) Press TI pushbuttons as listed in (a) through (j) below:
 - (a) FUNCTION-CARR FREQ.
 - (b) DATA ENTRY- 1 GHz.
 - (c) FUNCTION-CARR LEVEL.
 - (d) DATA ENTRY- 13 dBm.
 - (e) **FUNCTION- MOD LEVEL**.
 - (f) DATA ENTRY- 20 kHz.
 - (g) FUNCTION- MOD FREQ.
 - (h) DATA ENTRY- 1 kHz.
 - (i) **MODULATION/AUX-MOD ON ONE** (mod off red light extinguished).
 - (j) **FUNCTION-RF ON** to on (red light lit).

(6) Set measuring receiver to measure AM with a + PEAK detector, 3 kHz low-pass filter and a 300 Hz high-pass filter.

(7) Measuring receiver will indicate within the limits specified in table 28.

Table 28. Incidental AM				
Measuring receiver indication				
(%)				
<1				

(8) Press TI pushbuttons as listed in (a) through (f) below:

- (a) **FUNCTION-CARR FREQ**.
- (b) **DATA ENTRY 250 MHz**.
- (c) **FUNCTION-CARR LEVEL**.
- (d) DATA ENTRY 10 dBm.
- (e) FUNCTION MOD LEVEL.
- (f) **DATA ENTRY 200 kHz**.

(9) Set up measuring receiver to measure FM with a + PEAK detector, no high pass filter and no low pass filter.

(10) Set up audio analyzer to measure distortion with a slow detecting noise rejecting filter.

(11) Audio analyzer will indicate within the limits specified in table 29.

Table 29. FM Audio Distortion				
Audio analyzer				
distortion indication				
(%)				
2%				

(12) Press TI **FUNCTION-CARR FREQ, FUNCTION-MOD LEVEL**, and **DATA ENTRY** keys for the values listed in table 30. Using measuring receiver, measure the FM deviation. Measuring receiver will indicate within the limits specified in table 30.

		Measuring receiver indications		
Test instrument		(kH	Iz)	
	DATA ENTRY	DATA ENTRY		
DATA ENTRY	modulation	frequency		
carrier frequency	frequency	deviation		
(MHz)	(kHz)	(kHz)	Min	Max
1050	1	100	90	110
256	1	25	22.5	27.5
50	1	150	135	165
256	1	187	168.3	205.7

Table 30. FM Deviation

b. Adjustments. No adjustments can be made.

18. Phase Modulation

a. Performance Check

- (1) Connect measuring receiver sensor module (11722A) to TI **RF OUTPUT**.
- (2) Press TI pushbuttons as listed in (a) through (j) below:
 - (a) FUNCTION-CARR FREQ.
 - (b) DATA ENTRY- 8 MHz.
 - (c) **FUNCTION-CARR LEVEL**.
 - (d) DATA ENTRY- 10 dBm.
 - (e) FUNCTION-MOD FREQ.
 - (f) DATA ENTRY- 1 kHz.
 - (g) FUNCTION-MOD LEVEL.
 - (h) DATA ENTRY- 10 RAD.
 - (i) MODULATION/AUX-MOD ON ONE.
 - (j) **FUNCTION-RF ON** to on (red light lit).

(3) Set measuring receiver to measure PM with a + PEAK detector, 15 kHz low-pass filter and a 300 Hz high-pass filter.

(4) Using measuring receiver, measure phase modulation. Measuring receiver phase modulation indication will be within the limits specified for the first carrier frequency listed in table 31.

(5) Set TI **FUNCTION-CARR FREQ** and **DATA ENTRY** keys to the next frequency listed in table 31.

(6) Measuring receiver phase modulation indication will be within the limits specified in table 31 for the carrier frequency setting of the TI.

(7) Repeat (5) and (6) above for the remaining frequency listed in table 31.

Table 31. Phase Modulation						
	Measuring receiver phase modulation indications					
Test instrument	(rad)					
carrier frequency						
(MHz)	Min	Max				
8	9	11				
1050	9	11				
.50	9	11				

(8) Press TI pushbuttons as listed in (a) through (j) below:

- (a) **FUNCTION-CARR FREQ**.
- (b) DATA ENTRY- 8 MHz.
- (c) **FUNCTION- CARR LEVEL**.
- (d) **DATA ENTRY- 10 dBm**.
- (e) **FUNCTION-MOD FREQ**.
- (f) DATA ENTRY- 1 kHz.
- (g) **FUNCTION-MOD LEVEL**.
- (h) DATA ENTRY- 10 RAD.
- (i) MODULATION/AUX-MOD ON ONE.
- (j) **FUNCTION-RF ON** to on (red light lit).

(9) Set measuring receiver to measure 1 kHz audio distortion.

(10) Using measuring receiver, measure audio distortion. Measuring receiver audio distortion indication will be within the limits specified for the first carrier frquency listed in table 32.

(11) Set TI **FUNCTION-CARR FREQ** and **DATA ENTRY** keys to the next frequency listed in table 32.

(12) Measuring receiver audio distortion indication will be within the limits specified in table 32 for the carrier frequency setting of the TI.

(13) Repeat (11) and (12) above for the remaining frequency listed in table 32.

Table 32. Phase Modulation Audio Distortion				
Test instrument	Measuring receiver			
carrier frequency	audio distortion indications			
(MHz)	(%)			
8	2			
1050	2			
.50	2			

Table 32. Phase Modulation Audio Di	istortio
-------------------------------------	----------

b. **Adjustments**. No adjustments can be made.

19. Final Procedure

- **a**. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

THESE ARE THE INSTRUCTIONS FOR SENDING AN ELECTRONIC 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@avma27.army.mil To: 2028@redstone.army.mil **DA Form 2028** Subject: 1. **From**: Joe Smith 2. Unit: Home 3. Address: 4300 Park 4. City: Hometown 5. St: MO 6. **Zip**: 77777 7. Date Sent: 19-Oct-93 8. Pub No: TB 9-6625-xxxx-35 9. **Pub Title**: Calibration Procedure for ... 10. **Publication Date**: 11. Change Number: 12. Submitted Rank: MSG 13. Sumitter Fname: Joe 14. Submitter Mname: T 15. Submitter Lname: Smith 16. Submitter Phone: (123) 123-1234 17. **Problem**: 1 18. Page: 2 19. Paragraph: 3 20 Line: 4 21. NSN: 5 22. Reference: 6 23. Figure : 7 24. Table: 8 25. Item: 9 26. Total: 123

27: **Text**:

This is the text for the problem below line 27.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI General, United States Army Chief of Staff

OFFICIAL:

Jul B. Hula

JOEL B. HUDSON Administrative Assistant to the Secretary of the Army

0202822

Distribution:

To be distributed in accordance with IDN 344734 requirements for calibration procedure TB 9-6625-2330-35.